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On a direct bilinearization method: Kaup’s higher-order 
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Abstract. A systematic pmedure for the bilinearization of classes of soliton equations is 
developed with the help of a generalization of Bell’s exponential polynomials. Application of 
this procedure to Kaup‘s higher-order wave equation discloses several links with other soliton 
system. In particular, it is found that the Kaup equation is the modified version ofa sech square 
soliton system which constitutes an altemative to the good Boussinesq equation. 

1. Introduction 

Bilinear forms are generally recognized as an efficient tool to prove the existence of N- 
soliton solutions to nonlinear partial differential equations (NLPDEs) which are presumed to 
constitute a soliton system, and to relate these equations to Sato’s framework of integrable 
hierarchies (Jimbo and Miwa 1983). They are also useful in disclosing hidden links between 
different soliton systems. By deriving a bilinear Backlund transformation for the Boussinesq 
equation, Hirota and Satsuma (1977) obtained insight into other soliton equations including 
a modified Boussinesq equation and Kaup’s higher-order water wave equation (Kaup 1975). 
Experience has given strength to Hirota’s claim that every soliton system should be derivable 
from a fundamental equation (or system of equations) in bilinear form. However, the 
crucial question is ‘How does onefnd the bilinear equations, or the appropriate dependent 
variable transformations, without relying on clever guesswork? A possible answer may 
be obtained by relating the Hirota procedure to other direct techniques, such as similarity 
methods (Ludlow and Clarkson 1993) or the Painlev6 singularity analysis (Gibbon et al 
1985, Hietarinta and Kruskal 1992). It may therefore be important to identify the algebraic 
ingredients which are common to these methods, and to examine how simple partition 
polynomials, related to the definition of the Hirota D-operator, may lead to the bilinearizing 
transformations. 

In this paper we propose a direct bilinearization scheme, based on a notion of scale 
invariance and on the use of a generalization of Bell’s exponential polynomials (Bell 1934). 
We show how these polynomials may be used to decide whether a given NLPDE may be 
derived from a single bilinear equation of KdV type (Hietarinta 1987), or from a similar 
two field system. As we bilinearize the Kaup equation we obtain the ‘Miura’ link which 
relates this equation to a sech squared soliton system-we call it a nonlocal altemative 
to the Boussinesq equation (NLBq)-and to an equivalent real form (Boiti et a1 1981) of 
the nonlinear Schrodinger (RNLS) equation. The Kaup equation and the RNLS equation are 
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hereby found to inherit the solutions of a liearizable equation of the (potential) Burgers 
type. 

It may be noticed that the relation between the Kaup equation and the nonlinear 
Schrodinger equation has been established by Hirota (1985), and that the NLBq system 
corresponds to the integrability condition of a linear system discussed by Hirota and Satsuma 
(1977). Yet, the important point is that the above connections are. obtained as a result of a 
straightforward procedure in which all transformations are accounted for. Furthermore, it is 
worth specifying the form of the sech squared soliton system with Boussinesq dispersion of 
which Kaup's equation is the modified partner, and which, unlike the Boussinesq equation, 
cannot be derived from a single bilinear equation of the KdV type. 

2. Bell polynomials 

As a background for discussing the Hirota method we consider the Burgers-Hopf hierarchy 
(Choodnovsky 1977) of NLPDEs which can be linearized by means of the Cole-Hopf 
rimsformation. To express the link between these liearizable equations and the simplest 
types of bilinearizable equations it is useful to consider special families of partition 
polynomials. 

Consider a Cm function q ( x ) ,  the variable qr = a;q, r = 1,2, ..., and Bell's 
exponential polynomials: 

where the sum is to be taken over all partitions of n : n = c1 + 2cz + . . . + nc,. Thus: 

Yz(q) = q x  Y 2 . m  = 42r +q:  y 3 m  = q3x  +3qzq2r + q3 .... (2) 

By introducing several independent variables it is a straightforward matter to extend the Bell 
polynomials to more dimensions. We consider, in particular, the two-dimensional extension: 

~ ~ ~ , ~ ~ ( q )  _= ym,n(qr,s) = e-qa:a:eq qr.s = a:a:qcx, o (3) 

which still displays a simple partitional structure (each term corresponds to a partition of 
the available derivatives and carries a coefficient equal to the combinatorial weight of that 
partition): 

Y,,1(q) = qx.1 + 4x41 Y*.,,(q) = q2r.r + q2rq1 + 2qxq, ,1+  4x241 .... (4) 

The link between Y-polynomials and the Burgers-Hopf hierarchy follows from the 
definition (3) according to which: 

(5) 

Hence, it is clear that any NLPDE which is a linear combination of Y-polynomials can be 
linearized by the transformation q = In $. 

These Y-polynomials can therefore be used as a guide to decide whether a given NLmE 
can be linearized by this transformation or by a closely related one, such as the Cole- 
Hopf transformation. First one must look for the dimensional constraints on the variables 

1 YmX,dq =In$)  = $- $mz,nz. 
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(dependent and independent) which are imposed by the requirement that the equation be 
invariant under a scale transformation. One then rewrites the NLPDE in terms of a 'primary 
field' which is introduced as a dimensionless altemative to the original field and which is 
multiplied by a dimensionless (free) scaling constant. The primary field and the value of 
the constant should be chosen in such a way that the equation can the expressed as a h e a r  
combination of Y-polynomials, up to possible overall differentiations. As a simple example 
we consider the Burgers equation: 

W I  - W X X  + a w w ,  = 0 (6) 

which is invariant under the scale transformation: 

x Ax r + Art w + hdw (7) 

i f d - r  = d - 2  = 2d-1 orr  = 2andd = -1 (we assign adimension 1 tox, andconsider 
01 as a dimensionless parameter). A dimensionless primary field q ( x ,  f )  is easily introduced 
by setting w = cq,, with c = dimensionless constant. Equation (6) then becomes 

(8) 

The obvious reason for expressing the left-hand side of (6) as a derivative is that a quadratic 
nonlinearity excludes the use of Y-polynomials of orders larger than 2. Equation (8) tells 
us that c should be taken equal to - 2 / m ,  and that (6) is linearized by application of the 
Cole-Hopf transformation 

C(Y 
(a - q2.Z + p;) = [Yf(4) - Y2.Z(dl, + (2 + c4qxq2.Z = 0. 

2 
w=--a,ln@. 

O1 

3. Binary Bell polynomials 

Setting F =er  and G = eg, it follows from the definition of the Hirota operators 

D ; D ; F .  G = (a, - a,,)m(al - at,yqx, t )G(x' ,  rf)ixt=x,f,=f (9) 

that 

and the parity property 
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which follow straight away from definition (3) and from the explicit representation 

where the sum is to be taken over all partitions [ ( r l l ,  rzl)",  . . . (r lk ,  T % ) ~ ]  of (m, n). 
Formula (IO) suggests that one should introduce 'binary' Bell polynomials which are 

defined in terms of partial derivatives of two dimensionless field variables u ( x ,  t )  and u(x ,  t), 
and which obey the partitional recipe of the Y-polynomials combined with a simple parity 
rule: 

u , , ~  if r + s is even (14) 
Yrs = 

u, ,~  if r + s is odd 

Y m , m ( U ,  U) = Ymx,ni(Y) 

i.e. 

Formula (IO) then becomes 

It is easy to verify the separability property 

with 

pmx.nr(q) E Y m x , n r ( u  = 4,  U = 0) (18) 

on account of which it is found that the linearizing logarithmic transformation (5) produces 
the relation 

It should be noted that the only non-vanishing contributions to the right-hand side of (19) are 
those with r +s = even. The even-order P-polynomials contain only even-order derivatives 
and obey the partitional recipe (13), restricted to even part partitions: 

Pa(4)  = q2.X Px.*(q) = 4x.1 P4&) = 44r + 34& . . . . (20) 
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4. Generating equations and systems 

The Y-polynomials can be used to develop a direct bilinearization method, i.e. a procedure 
for constructing generating equations (or systems of equations) which are quadratic in the 
dependent variables, and in which all derivatives are expressed through the Hirota D- 
operator. The term ‘generating’ means that their solutions should, by construction, generate 
solutions to the original equation. 

We first remark that the formulas (16) and (1 8) imply 

(21) z m n  Pm,nr(q) = F-  D, DI F FIF=P~. 

Hence it is clear that NLPDES which are linear combinations of P-polynomials can be 
transformed into a single field bilinear equation of the form: 

;E(&, D J F  . F = 0 7 : polynomial (22) 

by the transformation q = 21n F .  
P-polynomials can therefore be used to decide whether a given NLPDE can be derived 

from a single bilinear equation of KdV type. Simple examples are the KdV and Bousinesq 
equations: 

wt + WQ + E W W X  = 0 w 2  - WOX + E ( W W , ) ,  = 0. (23) 

Invariance under the transformation (7), with dimcu = 0 imposes in both cases the consiraint 
dim w = -2. We therefore introduce a dimensionless q ( x ,  t )  by setting w = c q b  and 
rewriting (23) as (the quadratic nonlinearity excludes the use of P,&) with m > 4) 

Choosing, respectively, c = 6/a and c = - 6 / m  we find the generating (primary KdV and 
primary Boussinesq) equations: 

&.t + 4 4 ~  + 34k = Px,r(q) + P4&) e-q(D,D, + D;)eqn . eq/’ = 0 (26) 

qa - q4x - 3q& Pa(q) - PdZ(q) = eO(D: - Di)e4/2. e@ = 0 (27) 

and the bilinearkiing transformations 

12 
w = &-(In F ) ,  

E 

More challenging is the bilinearization of Kaup’s higher-order water wave equation 

K ( w ) = w z r - E W ~ + W 4 x + f ( w ~ ) t + ( w ~ w U r + ~ W : ) r  = o  (28) 

(Kaup 1975): 

which is closely related to the classical Boussinesq (CBq) equation (Kawamoto 1984, Hirota 
1985). 
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Some authors (Sachs 1988) find it convenient to transform this equation into a 
corresponding one with u = 0 by the transformation w -+ w + ut. In the present context 
it is preferable to bilinearize Kaup’s equation as it stands. The importance of leaving the 
parameter (Y in  the equation will become clear in the following. At this stage it suffices to 
remark that the process of bilinearization is not affected by the value of u. 

Scale invariance of (28) can only be preserved if dim w = 0 (with dimu equal -2 if 
u # 0). Setting w = cu we notice that K(cu)  cannot be expressed as a linear combination 
of P-polynomials (or Y-polynomials), nor as a derivative of such a combination. 

Yet, we may try to rewrite K(cu)  such as to incorporate as many terms as possible 
into h e a r  combinations of Y-polynomials, or into derivatives of such combinations. We 
therefore rewrite the scaled equation (28) in terms of brackets which contain only odd-order 
derivatives of u ( x ,  t ) :  

The first bracket can be expressed as 

(30) 
C C [Yr(u) + ZY&(U,  U)] f - ?U”.*. 

The remainder can be incorporated into the second bracket, which then becomes 

By choosing c = -2i we may express the three remaining terms as a linear combination of 
Y,(u, U) and Y,(u). Thus, setting w = -2iu in (28) we obtain a ‘primary’ version of the 
Kaup equation: 

P K ( U )  t ua - a u k  + u4, - zi(u,v, + 2u,u,,) - ~ ( u : ) ,  = o (32) 

which may be rewritten in the form: 

[Yl(u) - iYdu ,  u)lr +[Y3x(u, v)-~Yx(u)+iYz,r (U, U) -3iYx(u)[Yf (U) - i Y d u ,  u)llX = 0. 
(33) 

Taking advantage of the freedom which was introduced with the variable u ( x ,  t )  we impose 
a constraint on this auxiliary field so as to obtain a generating system for equation (32) which 
involves only linear combinations of Y-polynomials. An obvious choice is the condition: 
Y,(u) -iYb(u, U) = 0. It produces the system: 

which can be expressed in the bilinear form: 
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by application of the formula (16). 
The system (35) was obtained in Hirota (1985). Differentiation of the generating 

system (34) with respect to x produces a system for the fields U& and ~1~ which can be 
identified with the ClBq system discussed in Huota’s paper. Here, we obtain the two-field 
system (34) straight away from the Kaup equation (the converse is much easier). 

According to the formulas (17) and (19) we set U = u+q in order to obtain an equivalent 
version to the system (34): 

(36) 

which can be linearized through the logarithmic transformation U = In @ and recombined 
as 

b ( u )  + iYt(u) + Pa(q.0 = 0 [ S X ( 4  + iYX,&) + 3Pa(q)Yx(u) + iP&) - aux(u) = 0 

Notice that the formulas (35) and (37) are related by the transformation: @ = FIG, 
q = 2InG. 

The system (37) is similar to a coupled linear system discussed by Hirota and Satsuma 
(1977) and Hirota (1985). It should, by construction, generate solutions to the primary 
Kaup equation (32). Its compatibility is subject to the constraint [Lj, Lz]@ = 0, which is 
satisfied if q ( x ,  t )  satisfies the NLPDE: 

where we exclude the case q a  = a/2,  qx.r = 0. 
If qa = a/2  and qX., = 0 it is obvious that the system (37) reduces to a single equation 

(39) 
a ier + @a + T @  = 0 

the solutions of which generate solutions U = In @ to equation (32). Thus, it is found that 
the (primary) Kaup equation must inherit all the solutions of the equation 

(40) 2 a  

2 
iu, + u a  + ux + - = 0. 

In fact, it is easy to verify that 

P K ( ~ )  = (-iar + 8,” - 2u,a, - 2ua) (iur + ua + u: + - (41) 

5. Kaup’s equation as a ‘modified’ sech squared soliton system 

It is clear that by setting qk  = U and qx,r = V, equation (38) can be transformed into the 
first-order system 
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The particular link which relates this system to the Kaup equation is revealed by the 
system (36) or its equivalent: 

(43) 

which, as a Miura transformation (Hiiota and Satsuma 1977), maps the solutions of (32) 
into solutions of the system (42): 

U qk = Fl(u) -(% t U:) - iu, [ V = qr,, = Fz(u) = -Piu: + 2u,u, -t i q x  - U,, - icuu, 

In the following we restrict OUT discussion of the system (42) to the cases U 

(i) Case 01 t 0 .  When 01 > 0 the system (42) is found to admit sech squared soliton 
solutions and corresponding singular cosech squared solutions: 

0. 

which, as solitary wave solutions, are identical to those of the Boussinesq type equation (or 
system): 

The first equation in (46) transforms into the 'good' Boussinesq (GBq) equation studied by 
Manoranjan et a1 (1988) under the rescaling U + -U/3. 

The system (42) admits also regular two-soliton solutions: 

U2=2a~In11+exp81+exp82+A12exp(81 +e2)] 0, = - k i x + w i t + q  

(47) 
wi = Eikj(O1 - k?)'l2 k; < 01 Ei = f l  

which, unlike the GBq two-soliton solutions (Tajiri and Nishitani 1982, Manoranjan et 
a1 1988), describe elastic two-soliton collisions for all values of the soliton parameters 
0 c kl < kz < A, in fact, it is a straightforward matter to verify that, in contrast with the 
GBq case, the phase-shift parameter A12 remains positive and finite for all such values. The 
asymptotic decomposition of the expression (47) is therefore standard, the positions (shins) 
of the emerging solitons being determined by the direction of propagation of the fastest one 
(sign of el): 
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The system (42) with a > 0 may thus be regarded as an alternative to equation (46), 
With solitons of the same functional form but without the soliton resonances observed for 
equation (46) (Lambert et al 1987) and the related instability of high-amplitude solitons 
(Fal'kovich et a1 1983 and Manoranjan et al 1988). 

It may be noticed that the above solutions correspond to solutions q ( x , t )  of the 
'potential' equation (a corresponding equation for U = q k  would clearly be nonlocal): 

2 
42 - aq2. + 4 4 x  + 3q& - -(42.42+ q2r44r - dZ - q:,, + = 0 (49) 

which are such that when 4% equals a / 2  the functions q3x and qr,l must vanish 
simultaneously. As a result of this property it will turn out that the amplitude of the 
above two-soliton solutions is bounded by u/2. 

It is also instructive to remark that (38) may be regarded as the compatibility condition 
for a pair of conjugate systems (35), or (37), which are related by the transformation 
t + - t .  The explicit invariance of the bilinear system (35) under the transformation 
(t -+ - t ,  F + G), which reflects the invariance of (32) under the transformation (t  + -t, 
U + -U), implies the existence of a 'Darboux property' between the conjugate linear 
systems which allows the construction of non-trivial solutions to equation (38) out of 
trivial ones. Thus, let q ( x , t )  be a solution of (38) and let 9 be a (non-vanishing) 
solution of the system (37) for that q ( x .  t ) .  It follows from the relations 9 = F / G  
and q = 2 h G  that {F = +exp(q/2), G = exp(q/2)) must solve the bilinear system (35), 
F d  that L j  = exp(q/2), E = +exp(q/2)] must solve its conjugate. This implies that + = F / G  = +-' must satisfy the conjugate of system (37) in which q ( x ,  t )  has been 
replaced by 

U 

t j  = 21nG = q +21np.  (50) 

It follows that t j ( x ,  t )  must also solve equation (38). 
Setting a = 1 for definiteness, we may use this Darboux property to obtain the following 

two parameter family of solittuy wave solutions f i ( x ,  t ;  k ,  w )  to the system (42) out of the 
trivial solution U = 4, v = 0: 

( i f )  Case u = 0. It is easy to see that equation (38) with a = 0 must inherit all the 
solutions of the linearizable equation 

(52) 

This follows from the above Darboux property and from the fact that, at a = 0 and 
q ( x ,  t )  = 0, the system (37) reduces to the generating equation 

iq, + qk + $4; = 0. 

i9, + 9k = 0 (53) 

which transforms into equation (52) by the map q = 2 In +. 
Setting qx = w into the left-hand side of (38) one also verifies that 

(WZl + w4x + 2WXWk) - w;2w(wu,, w: + w&) 
= [-(ia,-a,)+w;'(iw, Z - w ~ ) ~ , + ~ ; ~ ~ ( w , , i w , - w ~ ) ~ ( i ~ ~ + w ~ + w w ~ )  

(54) 
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where Wf. g) = fg, - f,g. 
When LC = 0 the system (42) can also be seen to be closely related to the cubic 

nonlinear Schrodinger (NLS) equation (Hirota and Satsuma 1977, Hirota 1985). It should 
also be mentioned that equation (38) with a = 0 may be identified with a real equivalent 
to the NLs equation, for a field proportional to qx ,  which was derived by Boiti er al (1981). 

As we conclude, it is worth emphasizing that all the above results have been obtained 
from a straightforward bilinearization procedure in which all transformations are accounted 
for. 

Let us also remark that, u n l i e  the 'primary' Kdv and Boussinesq equations (26), (27), 
equation (49) does not correspond to a standard bilinear single field equation. It follows that, 
unlike the modified KdV and modified Boussinesq equations (Hirota and Satsuma 1977). the 
Kaup equation could not have been obtained by direct application of the bilinear BAcicklund 
techniques. 
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